Carnegie Mellon University in Qatar

AI for Medicine
15-182/282 - Spring 2021
Assignment 2

Name: \qquad
Andrew ID:

Due on: March 22, 2021 by midnight

Instructions:

- This assignment has maximum scores of 100 points for $15-282$ and 70 (plus 8 as a bonus) for 15-182.
- You should submit the assignment through Gradescope. Instructions on submissions will be provided through a Piazza announcement.

Question	Points	Score
Learning a Linear Regression Model	50	
Malignant or Benign Tumour	50	
Total:	100	

Problem 1: Learning a Linear Regression Model (50 Points)

As an example of supervised learning, consider the four points $(1,2),(2,1),(3,4)$, and (4, $3)$. These points can be thought of as a training set, wherein each point (x, y) includes a feature x and an associated label y. For instance, the point $(1,2)$ assumes $x=1$ and $y=2$; the other points can be interpreted similarly.
Suppose we want to "learn" the hypothesis function $h_{\theta}(x)=\theta_{0}+\theta_{1} x$ that best represents the points of the training set. A natural interpretation of "best" is that a cost function, say, the Mean Squared Error (MSE) of the value of $h_{\theta}(x)$ compared with the value of y over all the given points in the training set is minimized.
Answer the following questions after you show all your work.
12 pts (a) What will be the value of MSE if:
i. $\theta_{0}=0$ and $\theta_{1}=1$
ii. $\theta_{0}=1$ and $\theta_{1}=0$
iii. $\theta_{0}=1$ and $\theta_{1}=3$
iv. $\theta_{0}=1$ and $\theta_{1}=3 / 5$

18 pts (b) Starting off with $\theta_{0}=0$ and $\theta_{1}=0$, what will be the values of θ_{0} and θ_{1} after 3 rounds of running gradient descent, assuming:
i. The learning rate $\alpha=0.5$
ii. The learning rate $\alpha=0.2$
iii. The learning rate $\alpha=0.7$

8pts (c) This part is bonus for $\mathbf{1 5 - 1 8 2}$ and mandatory for $\mathbf{1 5 - 2 8 2}$: Solve this problem (i.e., finding the optimal θ_{0} and θ_{1} that best fit the given training set) through a system of equations rather than gradient descent. What are the optimal solutions for θ_{0} and θ_{1} ? (Hint: think of taking the derivatives of the cost function with respect to θ_{0} then with respect to θ_{1}). Show all your work.

12 pts (d) This part is only for 15-282: Write a Python program that solves this problem using gradient descent. Does your program produce the same optimal solution for θ_{0} and θ_{1} as calculated in part c ?

Problem 2: Malignant or Benign Tumour (50 Points)

Let us consider training a model to recognize whether a tumour is malignant or benign in a given input (e.g., an MRI represented in a specific format). To this end, let us assume a training set that consists of pairs (x, y), where x is a vector of 0 's and 1 's, with each component x_{i} in the vector corresponding to the presence $\left(x_{i}=1\right)$ or absence $\left(x_{i}=0\right)$ of a particular feature in the input. The value of y is +1 if the input is known to have a malignant tumour and -1 if it is known to have a benign one.
In this problem, we will assume that there are five features, namely, $x_{1}, x_{2}, x_{3}, x_{4}$, and x_{5} that dictate whether a tumour is malignant or benign in any given input. The table below shows a training set of six examples and their corresponding classes.

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	y
Example 1	1	1	0	1	1	+1
Example 2	0	0	1	1	0	-1
Example 3	0	1	1	0	0	+1
Example 4	1	0	0	1	0	-1
Example 5	1	0	1	0	1	+1
Example 6	1	0	1	1	0	-1

Figure 1: Six examples, each represented as a vector of 1 's and 0 's, where 1 or 0 indicates the presence or absence of a certain feature x_{i}, respectively. The label y indicates whether the example has a malignant $(y=+1)$ or benign $(y=-1)$ tumour.

Suppose we want to "learn" the hypothesis function $h_{\theta}(x)=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3} x_{3}+$ $\theta_{4} x_{4}+\theta_{5} x_{5}$ that best represents the examples of the training set. For this sake, let us consider using Mean Squared Error (MSE) as a cost function and transforming the problem into a classification problem via using thresholding (Note: As we will see later in class when covering logistic regression, this is not necessarily a good way to do classification). In particular, if $h_{\theta}(x)>0$, the tumour of the given input will be considered malignant, and if $h_{\theta}(x)<0$, the tumour will be deemed benign (the special case where $h_{\theta}(x)=0$ will be assumed "wrong").

25pts (a) Assuming a learning rate $\alpha=0.5$, what will be the values of $\theta_{0}, \theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$, and θ_{5} after one round of applying gradient descent, if we start off with $\theta_{0}=0, \theta_{1}=0, \theta_{2}=0$, $\theta_{3}=0, \theta_{4}=0$, and $\theta_{5}=0$? Do not only provide the answer but show all your work.
(b) Based on the above defined classification approach and the θ s learnt from one round of running gradient descent, how many of the given examples will be classified correctly? Do not only provide the answer but show your work.
(c) Based on the above defined classification approach and the θ s learnt from one round of running gradient descent, what will be the tumour type of this new unknown example $\left[x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=0, x_{5}=1\right] ?$
(d) This part is only for 15-282: Write a Python program that implements this problem, assuming the training set given in Figure 1. You can stop your training phase after 10 iterations of gradient descent. Your program should be able to classify any new example (but of course, not necessarily correctly).

